References
Gilany, K., Minai-Tehrani, A., Savadi-Shiraz, E., Rezadoost, H. & Lakpour, N. Exploring the human seminal plasma proteome: an unexplored gold mine of biomarker for male infertility and male reproduction disorder. J. Reprod. Infertil. 16, 61–71 (2015).
Tena-Sempere, M. Ghrelin, the gonadal axis and the onset of puberty. Endocr. Dev. 25, 69–82 (2013).
Nargund, V. H. Effects of psychological stress on male fertility. Nat. Rev. Urol. 12, 373–382 (2015).
Rey, R. A. et al. Male hypogonadism: an extended classification based on a developmental, endocrine physiology-based approach. Andrology 1, 3–16 (2013).
Nieto, C. M., Rider, L. C. & Cramer, S. D. Influence of stromal–epithelial interactions on androgen action. Endocr. Relat. Cancer 21, T147–T160 (2014).
Wagenlehner, F. et al. Prostatitis and andrological implications. Minerva Urol. Nefrol. 65, 117–123 (2013).
CAS PubMed Google Scholar
Ficarra, V. et al. The role of prostatic inflammation in low urinary tract symptoms (LUTS) due to benign prostatic hyperplasia (BPH) and its potential impact on medical therapy. Curr. Urol. Rep. 15, 463–469 (2014).
Wagenlehner, F. M. E. et al. The role of inflammation and infection in the pathogenesis of prostate carcinoma. BJU Int. 100, 733–737 (2007).
Roberts, R. O., Lieber, M. M., Bostwick, D. G. & Jacobsen, S. J. A review of clinical and pathological prostatitis syndromes. Urology 49, 809–821 (1997).
Kalinska, M., Meyer-Hoffert, U., Kantyka, T., Potempa, J. Kallikreins. The melting pot of activity and function. Biochimie 122, 270–282 (2016).
Medrano, A. et al. Utilization of citrate and lactate through a lactate dehydrogenase and ATP-regulated pathway in boar spermatozoa. Mol. Reprod. Dev. 73, 369–378 (2006).
Franz, M. C. et al. Zinc transporters in prostate cancer. Mol. Aspects Med. 34, 735–741 (2013).
Franklin, R. B., Milon, B., Feng, P. & Costello, L. C. Zinc and zinc transporters in normal prostate and the pathogenesis of prostate cancer. Front. Biosci. 10, 2230–2239 (2005).
Lorenzetti, S. & Narciso, L. in Computational Approaches To Nuclear Receptors (eds Cozzini, P. & Kellogg, G. E.) 1–22 (RSC Publishing, 2012).
Takayama, K. & Inoue, S. Transcriptional network of androgen receptor in prostate cancer progression. Int. J. Urol. 20, 756–768 (2013).
Horie-Inoue, K. & Inoue, S. Genome-wide integrated analyses of androgen receptor signaling in prostate cancer based on high-throughput technology. Curr. Drug Targets 14, 472–480 (2013).
Lamont, K. R. & Tindall, D. J. Androgen regulation of gene expression. Adv. Cancer Res. 107, 137–162 (2010).
Johnson, L. A., Kanak, M. A., Kajdacsy-Balla, A., Pestaner, J. P. & Bagasra, O. Differential zinc accumulation and expression of human zinc transporter 1 (hZIP1) in prostate glands. Methods 52, 316–321 (2010).
Costello, L. C. & Franklin, R. B. The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots. Mol. Cancer 5, 17 (2006).
Franklin, R. B. et al. hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer. Mol. Cancer 4, 32 (2005).
Desouki, M. M., Geradts, J., Milon, B., Franklin, R. B. & Costello, L. C. hZip2 and hZip3 zinc transporters are down regulated in human prostate adenocarcinomatous glands. Mol. Cancer 6, 37 (2007).
Kolenko, V., Teper, E., Kutikov, A. & Uzzo, R. Zinc and zinc transporters in prostate carcinogenesis. Nat. Rev. Urol. 10, 219–226 (2013).
Tepaamorndech, S., Huang, L. & Kirschke, C. P. A null-mutation in the Znt7 gene accelerates prostate tumor formation in a transgenic adenocarcinoma mouse prostate model. Cancer Lett. 308, 33–42 (2011).
Thorek, D. L., Evans, M. J., Carlsson, S. V., Ulmert, D. & Lilja, H. Prostate-specific kallikrein-related peptidases and their relation to prostate cancer biology and detection. Thromb. Haemost. 110, 484–492 (2013).
Bartoletti, R. et al. Prevalence, incidence estimation, risk factors and characterization of chronic prostatitis/chronic pelvic pain syndrome in urological hospital outpatients in Italy: results of a multicenter case-control observational study. J. Urol. 178, 2411–2415 (2007).
Domes, T. et al. The incidence and effect of bacteriospermia and elevated seminal leukocytes on semen parameters. Fertil. Steril. 97, 1050–1055 (2012).
Mändar, R., Raukas, E., Tu¨rk, S., Korrovits, P. & Punab, M. Mycoplasmas in semen of chronic prostatitis patients. Scand. J. Urol. Nephrol. 39, 479–482 (2005).
Fraczek, M. et al. Membrane stability and mitochondrial activity of human-ejaculated spermatozoa during in vitro experimental infection with Escherichia coli, Staphylococcus haemolyticus and Bacteroides ureolyticus. Andrologia 44, 315–329 (2012).
Schulz, M., Sánchez, R., Soto, L., Risopatrón, J. & Villegas, J. Effect of Escherichia coli and its soluble factors on mitochondrial membrane potential, phosphatidylserine translocation, viability, and motility of human spermatozoa. Fertil. Steril. 94, 619–623 (2010).
Diemer, T. et al. Escherichia coli-induced alterations of human spermatozoa. An electron microscopy analysis. Int. J. Androl. 23, 178–186 (2000).
Marconi, M., Pilatz, A., Wagenlehner, F., Diemer, T. & Weidner, W. Impact of infection on the secretory capacity of the male accessory glands. Int. Braz. J. Urol. 35, 299–309 (2000).
Dobrindt, U., Hochhut, B., Hentschel, U. & Hacker, J. Genomic islands in pathogenic and environmental microorganisms. Nat. Rev. Microbiol. 2, 414–424 (2004).
Marrs, C. F., Zhang, L. & Foxman, B. Escherichia coli mediated urinary tract infections: are there distinct uropathogenic E. coli (UPEC) pathotypes? FEMS Microbiol. Lett. 252, 183–190 (2005).
Dhakal, B. K. & Mulvey, M. A. The UPEC pore-forming toxin α-hemolysin triggers proteolysis of host proteins to disrupt cell adhesion, inflammatory, and survival pathways. Cell Host Microbe 11, 58–69 (2012).
Diemer, T., Ludwig, M., Huwe, P., Hales, B. & Weidner, W. Influence of urogenital infection on sperm function. Curr. Opin. Urol. 10, 39–44 (2000).
Kaur, K. & Prabha, V. Impairment by sperm agglutinating factor isolated from Escherichia coli: receptor specific interactions. Biomed. Res. Int. 54, 84–97 (2013).
Ludwig, M. et al. Experimental Escherichia coli epididymitis in rats: a model to assess the outcome of antibiotic treatment. BJU Int. 90, 933–938 (2002).
Lu, Y. et al. Necrosis is the dominant cell death pathway in uropathogenic Escherichia coli elicited epididymo-orchitis and is responsible for damage of rat testis. PLoS ONE 8, e52919 (2013).
Bhushan, S. et al. Uropathogenic Escherichia coli block MyD88-dependent and activate MyD88-independent signaling pathways in rat testicular cells. J. Immunol. 180, 5537–5547 (2008).
Dohle, G. R. Inflammatory-associated obstructions of the male reproductive tract. Andrologia 35, 321–324 (2003).
Cai, T., Mazzoli, S., Mondaini, N., Malossini, G. & Bartoletti, R. Chlamydia trachomatis infection: a challenge for the urologist. Microbiol. Res. 2, e14 (2011).
Krishnan, R. & Heal, M. R. Study of the seminal vesicles in acute epididymitis. Br. J. Urol. 67, 632–637 (1991).
Alwaal, A., Breyer, B. N. & Lue, T. F. Normal male sexual function: emphasis on orgasm and ejaculation. Fertil. Steril. 104, 1051–1060 (2015).
Eley, A., Pacey, A. A., Galdiero, M., Galdiero, M. & Galdiero, F. Can Chlamydia trachomatis directly damage your sperm? Lancet Infect. Dis. 5, 53–57 (2005).
Erbengi, T. Ultrastructural observations on the entry of Chlamydia trachomatis into human spermatozoa. Hum. Reprod. 8, 416–421 (1993).
Munoz, G., Posnett, D. N. & Witkin, S. S. Enrichment of γδ T lymphocytes in human semen: relation between γδ T cell concentration and antisperm antibody status. J. Reprod. Immunol. 22, 47–57 (1992).
Karinen, L. et al. Antibodies to Chlamydia trachomatis heat shock proteins Hsp60 and Hsp10 and subfertility in general population at age 31. Am. J. Reprod. Immunol. 52, 291–297 (2004).
Domeika, M., Domeika, K., Paavonen, J., Mardh, P. A. & Witkin, S. S. Humoral immune response to conserved epitopes of Chlamydia trachomatis and human 60-kDa heat-shock protein in women with pelvic inflammatory disease. J. Infect. Dis. 177, 714–719 (1998).
Mazzoli, S. Chlamydia trachomatis infection is related to poor semen quality in young prostatitis patients. Eur. Urol. 57, 708–714 (2010).
Leib, Z., Bartoov, B., Eltes, F. & Servadio, C. Reduced semen quality caused by chronic abacterial prostatitis: an enigma or reality? Fertil. Steril. 61, 1109–1116 (1994).
Potts, J. M. & Pasqualotto, F. F. Seminal oxidative stress in patients with chronic prostatitis. Andrologia 35, 304–308 (2003).
Showell, M. G. et al. Antioxidants for male subfertility. Cochrane Database Syst. Rev. 12, CD007411 (2014).
Hochreiter, W. W., Duncan, J. L. & Schaeffer, A. J. Evaluation of the bacterial flora of the prostate using a 16S rRNA gene based polymerase chain reaction. J. Urol. 163, 127–130 (2000).
Kaur, K. & Prabha, V. Spermagglutinating Escherichia coli and its role in infertility: in vivo study. Microb. Pathog. 69–70, 33–38 (2014).
Ochsendorf, F. R. et al. Chlamydia trachomatis and male infertility: Chlamydia-IgA antibodies in seminal plasma are C. trachomatis specific and associated with an inflammatory response. J. Eur. Acad. Dermatol. Venereol. 12, 143–152 (1999).
Cai, T. et al. Semen quality in patients with Chlamydia trachomatis genital infection treated concurrently with prulifloxacin and a phytotherapeutic agent. J. Androl. 33, 615–623 (2012).
Steiner, G. et al. Phenotype and function of peripheral and prostatic lymphocytes in patients with benign prostatic hyperplasia. J. Urol. 151, 480–484 (1994).
Gandaglia, G. et al. The role of chronic prostatic inflammation in the pathogenesis and progression of benign prostatic hyperplasia (BPH). BJU Int. 112, 432–441 (2013).
Shah, R., Mucci, N. R., Amin, A., Macoska, J. A. & Rubin, M. A. Postatrophic hyperplasia of the prostate gland: neoplastic precursor or innocent bystander? Am. J. Pathol. 158, 1767–1773 (2001).
Elkahwaji, J. E., Zhong, W., Hopkins, W. J. & Bushman, W. Chronic bacterial infection and inflammation incite reactive hyperplasia in a mouse model of chronic prostatitis. Prostate 67, 14–21 (2007).
Simons, B. W. et al. A human prostatic bacterial isolate alters the prostatic microenvironment and accelerates prostate cancer progression. J. Pathol. 235, 478–489 (2015).
Sampson, N. et al. The ageing male reproductive tract. J. Pathol. 211, 206–218 (2007).
Untergasser, G. et al. Proliferative disorders of the aging human prostate: involvement of protein hormones and their receptors. Exp. Gerontol. 34, 275–287 (1999).
Hoover, P. & Naz, R. K. Do men with prostate abnormalities (prostatitis/benign prostatic hyperplasia/prostate cancer) develop immunity to spermatozoa or seminal plasma? Int. J. Androl. 35, 608–615 (2012).